Title: Investigating the causality between 25-Hydroxyvitamin D level on Hypothyroidism
1- Number of total SNPs in exposure: 7,250,104 SNPs
2- Number of SNPs exposure with p-value < \(5 \times 10^-8\): 16,012 SNPs
3- Number of SNPs exposure after clumping : 115 SNPs
4- Number of total SNPs in outcome: 10,836,150 SNPs
5- Number of common variants between exposure and outcome: 109 SNPs
6- Number of SNPs after harmonization (action=3) = 90 SNPs
7- Number of SNPs after removing HLA region with exploring in HLA Genes, Nomenclature = 89 SNP (rs28407950 was removed)
8- Number of SNPs after removing those that have MAF < 0.01 = 89 SNPs
10- Checking pleiotropy by PhenoScanner:
How many SNPs have been eliminated after checking the PhenoScanner website: 0 SNPs
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 29.78 36.13 42.63 117.54 70.06 2567.54
How many SNPs have been eliminated with checking the weakness: 0 SNP
id.exposure | id.outcome | outcome | exposure | method | nsnp | b | se | pval |
---|---|---|---|---|---|---|---|---|
oUw2e5 | avirfC | outcome | exposure | MR Egger | 89 | -0.1464337 | 0.0916311 | 0.1136513 |
oUw2e5 | avirfC | outcome | exposure | Weighted median | 89 | -0.1237461 | 0.0664158 | 0.0624335 |
oUw2e5 | avirfC | outcome | exposure | Inverse variance weighted | 89 | -0.1307693 | 0.0577112 | 0.0234559 |
oUw2e5 | avirfC | outcome | exposure | Simple mode | 89 | -0.1865331 | 0.1400346 | 0.1862833 |
oUw2e5 | avirfC | outcome | exposure | Weighted mode | 89 | -0.1418811 | 0.0613496 | 0.0230741 |
id.exposure | id.outcome | outcome | exposure | method | Q | Q_df | Q_pval |
---|---|---|---|---|---|---|---|
oUw2e5 | avirfC | outcome | exposure | MR Egger | 180.7067 | 87 | 0 |
oUw2e5 | avirfC | outcome | exposure | Inverse variance weighted | 180.8081 | 88 | 0 |
id.exposure | id.outcome | outcome | exposure | egger_intercept | se | pval |
---|---|---|---|---|---|---|
oUw2e5 | avirfC | outcome | exposure | 0.0005249 | 0.0023765 | 0.8257019 |
## [1] "Two SNPs (rs73413596 and rs9861009) were detected by MRPRESSO and excluded for further analyses"
id.exposure | id.outcome | outcome | exposure | method | nsnp | b | se | pval |
---|---|---|---|---|---|---|---|---|
oUw2e5 | avirfC | outcome | exposure | MR Egger | 87 | -0.1334385 | 0.0800126 | 0.0990519 |
oUw2e5 | avirfC | outcome | exposure | Weighted median | 87 | -0.1247436 | 0.0672326 | 0.0635386 |
oUw2e5 | avirfC | outcome | exposure | Inverse variance weighted | 87 | -0.1267930 | 0.0505315 | 0.0121008 |
oUw2e5 | avirfC | outcome | exposure | Simple mode | 87 | -0.1848303 | 0.1496629 | 0.2202023 |
oUw2e5 | avirfC | outcome | exposure | Weighted mode | 87 | -0.1337747 | 0.0657218 | 0.0448821 |
id.exposure | id.outcome | outcome | exposure | method | Q | Q_df | Q_pval |
---|---|---|---|---|---|---|---|
oUw2e5 | avirfC | outcome | exposure | MR Egger | 134.4047 | 85 | 0.0005139 |
oUw2e5 | avirfC | outcome | exposure | Inverse variance weighted | 134.4230 | 86 | 0.0006569 |
id.exposure | id.outcome | outcome | exposure | egger_intercept | se | pval |
---|---|---|---|---|---|---|
oUw2e5 | avirfC | outcome | exposure | 0.0002243 | 0.0020857 | 0.9146166 |
##
## Radial IVW
##
## Estimate Std.Error t value Pr(>|t|)
## Effect (Mod.2nd) -0.1267937 0.05053137 -2.509208 0.012100225
## Iterative -0.1267937 0.05053137 -2.509208 0.012100225
## Exact (FE) -0.1284882 0.04043783 -3.177427 0.001485882
## Exact (RE) -0.1278726 0.05773297 -2.214896 0.029410571
##
##
## Residual standard error: 1.25 on 86 degrees of freedom
##
## F-statistic: 6.3 on 1 and 86 DF, p-value: 0.014
## Q-Statistic for heterogeneity: 134.2939 on 86 DF , p-value: 0.0006739595
##
## No significant outliers
## Number of iterations = 2
## [1] "No significant outliers"
In statistics, Cook’s distance or Cook’s D is a commonly used estimate of the influence of a data point when performing a least-squares regression analysis.[1] In a practical ordinary least squares analysis, Cook’s distance can be used in several ways:
1- To indicate influential data points that are particularly worth checking for validity.
2- To indicate regions of the design space where it would be good to be able to obtain more data points.
It is named after the American statistician R. Dennis Cook, who introduced the concept in 1977.
## 23 82
## 7.9211985 0.3927332
id.exposure | id.outcome | outcome | exposure | method | nsnp | b | se | pval |
---|---|---|---|---|---|---|---|---|
oUw2e5 | avirfC | outcome | exposure | MR Egger | 77 | -0.3186386 | 0.1133876 | 0.0063124 |
oUw2e5 | avirfC | outcome | exposure | Weighted median | 77 | -0.2144203 | 0.0786440 | 0.0064016 |
oUw2e5 | avirfC | outcome | exposure | Inverse variance weighted | 77 | -0.1973681 | 0.0535110 | 0.0002257 |
oUw2e5 | avirfC | outcome | exposure | Simple mode | 77 | -0.2324364 | 0.1715690 | 0.1795047 |
oUw2e5 | avirfC | outcome | exposure | Weighted mode | 77 | -0.2661283 | 0.1027979 | 0.0115342 |
id.exposure | id.outcome | outcome | exposure | method | Q | Q_df | Q_pval |
---|---|---|---|---|---|---|---|
oUw2e5 | avirfC | outcome | exposure | MR Egger | 73.88599 | 75 | 0.5147087 |
oUw2e5 | avirfC | outcome | exposure | Inverse variance weighted | 75.35763 | 76 | 0.4992441 |
id.exposure | id.outcome | outcome | exposure | egger_intercept | se | pval |
---|---|---|---|---|---|---|
oUw2e5 | avirfC | outcome | exposure | 0.002823 | 0.0023271 | 0.2288948 |
##
## Inverse-variance weighted method
## (variants uncorrelated, random-effect model)
##
## Number of Variants : 77
##
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## IVW -0.197 0.054 -0.302, -0.092 0.000
## ------------------------------------------------------------------
## Residual standard error = 0.996
## Residual standard error is set to 1 in calculation of confidence interval when its estimate is less than 1.
## Heterogeneity test statistic (Cochran's Q) = 75.3576 on 76 degrees of freedom, (p-value = 0.4992). I^2 = 0.0%.
## Method Estimate Std Error 95% CI P-value
## Simple median -0.202 0.084 -0.367 -0.036 0.017
## Weighted median -0.215 0.082 -0.375 -0.054 0.009
## Penalized weighted median -0.215 0.082 -0.375 -0.054 0.009
##
## IVW -0.197 0.054 -0.302 -0.092 0.000
## Penalized IVW -0.197 0.054 -0.302 -0.092 0.000
## Robust IVW -0.202 0.052 -0.304 -0.099 0.000
## Penalized robust IVW -0.202 0.052 -0.304 -0.099 0.000
##
## MR-Egger -0.319 0.113 -0.541 -0.096 0.005
## (intercept) 0.003 0.002 -0.002 0.007 0.225
## Penalized MR-Egger -0.319 0.113 -0.541 -0.096 0.005
## (intercept) 0.003 0.002 -0.002 0.007 0.225
## Robust MR-Egger -0.317 0.094 -0.502 -0.133 0.001
## (intercept) 0.003 0.002 -0.002 0.007 0.230
## Penalized robust MR-Egger -0.317 0.094 -0.502 -0.133 0.001
## (intercept) 0.003 0.002 -0.002 0.007 0.230
id.exposure | id.outcome | exposure | outcome | snp_r2.exposure | snp_r2.outcome | correct_causal_direction | steiger_pval |
---|---|---|---|---|---|---|---|
oUw2e5 | avirfC | exposure | outcome | 0.0138834 | 0.0001799 | TRUE | 0 |
## $r2_exp
## [1] 0
##
## $r2_out
## [1] 0.25
##
## $r2_exp_adj
## [1] 0
##
## $r2_out_adj
## [1] 0.25
##
## $correct_causal_direction
## [1] FALSE
##
## $steiger_test
## [1] 0
##
## $correct_causal_direction_adj
## [1] FALSE
##
## $steiger_test_adj
## [1] 0
##
## $vz
## [1] NaN
##
## $vz0
## [1] 0
##
## $vz1
## [1] NaN
##
## $sensitivity_ratio
## [1] NaN
##
## $sensitivity_plot
## $beta.hat
## [1] -0.1999762
##
## $beta.se
## [1] 0.05431763
##
## $beta.p.value
## [1] 0.0002317672
##
## $naive.se
## [1] 0.05395171
##
## $chi.sq.test
## [1] 75.17799
## over.dispersion loss.function beta.hat beta.se
## 1 FALSE l2 -0.1999762 0.05431763
## 2 FALSE huber -0.2055908 0.05573633
## 3 FALSE tukey -0.2049427 0.05573554
## 4 TRUE l2 -0.1999772 0.05432156
## 5 TRUE huber -0.2056785 0.05588018
## 6 TRUE tukey -0.2050190 0.05627405
##
## MR-Lasso method
##
## Number of variants : 77
## Number of valid instruments : 77
## Tuning parameter : 0.2793058
## ------------------------------------------------------------------
## Exposure Estimate Std Error 95% CI p-value
## exposure -0.197 0.054 -0.302, -0.092 0.000
## ------------------------------------------------------------------
##
## Constrained maximum likelihood method (MRcML)
## Number of Variants: 77
## Results for: cML-MA-BIC
## ------------------------------------------------------------------
## Method Estimate SE Pvalue 95% CI
## cML-MA-BIC -0.200 0.054 0.000 [-0.306,-0.095]
## ------------------------------------------------------------------
##
## Debiased inverse-variance weighted method
## (Over.dispersion:TRUE)
##
## Number of Variants : 77
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value Condition
## dIVW -0.200 0.054 -0.307, -0.094 0.000 652.186
## ------------------------------------------------------------------
##
## Mode-based method of Hartwig et al
## (weighted, delta standard errors [not assuming NOME], bandwidth factor = 1)
##
## Number of Variants : 77
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## MBE -0.266 0.112 -0.486, -0.046 0.018
## ------------------------------------------------------------------
Title: Investigating the causality between 25-Hydroxyvitamin D level on Hashimoto’s Disease
1- Number of total SNPs in exposure: 7,250,104 SNPs
2- Number of SNPs exposure with p-value < \(5 \times 10^-8\): 16,012 SNPs
3- Number of SNPs exposure after clumping : 115 SNPs
4- Number of total SNPs in outcome: 25,797,652 SNPs
5- Number of common variants between exposure and outcome: 106 SNPs
6- Number of SNPs after harmonization (action=3) = 88 SNPs
7- Number of SNPs after removing HLA region with exploring in HLA Genes, Nomenclature = 87 SNP (rs28407950 was removed)
8- Number of SNPs after removing those that have MAF < 0.01 = 87 SNPs
10- Checking pleiotropy by PhenoScanner:
How many SNPs have been eliminated after checking the PhenoScanner website: 0 SNPs
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 29.78 35.78 43.13 118.55 67.82 2567.54
How many SNPs have been eliminated with checking the weakness: 0 SNP
id.exposure | id.outcome | outcome | exposure | method | nsnp | b | se | pval |
---|---|---|---|---|---|---|---|---|
oUw2e5 | jVh3lS | outcome | exposure | MR Egger | 87 | -0.1767241 | 0.1667552 | 0.2922463 |
oUw2e5 | jVh3lS | outcome | exposure | Weighted median | 87 | -0.0450173 | 0.1511758 | 0.7658700 |
oUw2e5 | jVh3lS | outcome | exposure | Inverse variance weighted | 87 | -0.0469765 | 0.1008700 | 0.6414211 |
oUw2e5 | jVh3lS | outcome | exposure | Simple mode | 87 | 0.1921724 | 0.2781094 | 0.4914291 |
oUw2e5 | jVh3lS | outcome | exposure | Weighted mode | 87 | -0.0462505 | 0.1263834 | 0.7152983 |
id.exposure | id.outcome | outcome | exposure | method | Q | Q_df | Q_pval |
---|---|---|---|---|---|---|---|
oUw2e5 | jVh3lS | outcome | exposure | MR Egger | 112.7475 | 85 | 0.0237107 |
oUw2e5 | jVh3lS | outcome | exposure | Inverse variance weighted | 114.0142 | 86 | 0.0233072 |
id.exposure | id.outcome | outcome | exposure | egger_intercept | se | pval |
---|---|---|---|---|---|---|
oUw2e5 | jVh3lS | outcome | exposure | 0.004073 | 0.0041678 | 0.3312166 |
## [1] "Two SNPs (rs73413596 and rs9861009) were detected by MRPRESSO and excluded for further analyses"
id.exposure | id.outcome | outcome | exposure | method | nsnp | b | se | pval |
---|---|---|---|---|---|---|---|---|
oUw2e5 | jVh3lS | outcome | exposure | MR Egger | 87 | -0.1767241 | 0.1667552 | 0.2922463 |
oUw2e5 | jVh3lS | outcome | exposure | Weighted median | 87 | -0.0450173 | 0.1584242 | 0.7762901 |
oUw2e5 | jVh3lS | outcome | exposure | Inverse variance weighted | 87 | -0.0469765 | 0.1008700 | 0.6414211 |
oUw2e5 | jVh3lS | outcome | exposure | Simple mode | 87 | 0.1921724 | 0.2743620 | 0.4855471 |
oUw2e5 | jVh3lS | outcome | exposure | Weighted mode | 87 | -0.0462505 | 0.1295946 | 0.7220515 |
id.exposure | id.outcome | outcome | exposure | method | Q | Q_df | Q_pval |
---|---|---|---|---|---|---|---|
oUw2e5 | jVh3lS | outcome | exposure | MR Egger | 112.7475 | 85 | 0.0237107 |
oUw2e5 | jVh3lS | outcome | exposure | Inverse variance weighted | 114.0142 | 86 | 0.0233072 |
id.exposure | id.outcome | outcome | exposure | egger_intercept | se | pval |
---|---|---|---|---|---|---|
oUw2e5 | jVh3lS | outcome | exposure | 0.004073 | 0.0041678 | 0.3312166 |
##
## Radial IVW
##
## Estimate Std.Error t value Pr(>|t|)
## Effect (Mod.2nd) -0.04697674 0.10087009 -0.4657153 0.6414193
## Iterative -0.04697674 0.10087009 -0.4657153 0.6414193
## Exact (FE) -0.04752580 0.08760697 -0.5424887 0.5874819
## Exact (RE) -0.04738330 0.08539171 -0.5548935 0.5804079
##
##
## Residual standard error: 1.151 on 86 degrees of freedom
##
## F-statistic: 0.22 on 1 and 86 DF, p-value: 0.643
## Q-Statistic for heterogeneity: 114.0109 on 86 DF , p-value: 0.02331904
##
## No significant outliers
## Number of iterations = 2
## [1] "No significant outliers"
In statistics, Cook’s distance or Cook’s D is a commonly used estimate of the influence of a data point when performing a least-squares regression analysis.[1] In a practical ordinary least squares analysis, Cook’s distance can be used in several ways:
1- To indicate influential data points that are particularly worth checking for validity.
2- To indicate regions of the design space where it would be good to be able to obtain more data points.
It is named after the American statistician R. Dennis Cook, who introduced the concept in 1977.
## 22 26 28 81
## 2.2775207 0.1161799 0.3026865 0.3128092
id.exposure | id.outcome | outcome | exposure | method | nsnp | b | se | pval |
---|---|---|---|---|---|---|---|---|
oUw2e5 | jVh3lS | outcome | exposure | MR Egger | 81 | -0.1444301 | 0.1675495 | 0.3912886 |
oUw2e5 | jVh3lS | outcome | exposure | Weighted median | 81 | -0.0405204 | 0.1530674 | 0.7912231 |
oUw2e5 | jVh3lS | outcome | exposure | Inverse variance weighted | 81 | -0.0213403 | 0.0985213 | 0.8285153 |
oUw2e5 | jVh3lS | outcome | exposure | Simple mode | 81 | 0.2127241 | 0.3004208 | 0.4809492 |
oUw2e5 | jVh3lS | outcome | exposure | Weighted mode | 81 | -0.0244143 | 0.1329955 | 0.8548133 |
id.exposure | id.outcome | outcome | exposure | method | Q | Q_df | Q_pval |
---|---|---|---|---|---|---|---|
oUw2e5 | jVh3lS | outcome | exposure | MR Egger | 95.32294 | 79 | 0.1019003 |
oUw2e5 | jVh3lS | outcome | exposure | Inverse variance weighted | 96.31948 | 80 | 0.1032066 |
id.exposure | id.outcome | outcome | exposure | egger_intercept | se | pval |
---|---|---|---|---|---|---|
oUw2e5 | jVh3lS | outcome | exposure | 0.0037247 | 0.0040985 | 0.3662284 |
##
## Inverse-variance weighted method
## (variants uncorrelated, random-effect model)
##
## Number of Variants : 81
##
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## IVW -0.021 0.099 -0.214, 0.172 0.829
## ------------------------------------------------------------------
## Residual standard error = 1.097
## Heterogeneity test statistic (Cochran's Q) = 96.3195 on 80 degrees of freedom, (p-value = 0.1032). I^2 = 16.9%.
## Method Estimate Std Error 95% CI P-value
## Simple median 0.081 0.155 -0.223 0.386 0.600
## Weighted median -0.040 0.150 -0.335 0.254 0.788
## Penalized weighted median -0.042 0.150 -0.336 0.253 0.782
##
## IVW -0.021 0.099 -0.214 0.172 0.829
## Penalized IVW -0.036 0.095 -0.221 0.150 0.706
## Robust IVW -0.032 0.069 -0.167 0.104 0.648
## Penalized robust IVW -0.036 0.069 -0.171 0.099 0.599
##
## MR-Egger -0.144 0.168 -0.473 0.184 0.389
## (intercept) 0.004 0.004 -0.004 0.012 0.363
## Penalized MR-Egger -0.121 0.163 -0.441 0.198 0.457
## (intercept) 0.003 0.004 -0.005 0.011 0.499
## Robust MR-Egger -0.113 0.095 -0.298 0.073 0.234
## (intercept) 0.003 0.004 -0.005 0.010 0.485
## Penalized robust MR-Egger -0.105 0.091 -0.283 0.073 0.249
## (intercept) 0.002 0.004 -0.005 0.010 0.533
id.exposure | id.outcome | exposure | outcome | snp_r2.exposure | snp_r2.outcome | correct_causal_direction | steiger_pval |
---|---|---|---|---|---|---|---|
oUw2e5 | jVh3lS | exposure | outcome | 0.0171032 | 0.0002433 | TRUE | 0 |
## $r2_exp
## [1] 0
##
## $r2_out
## [1] 0.25
##
## $r2_exp_adj
## [1] 0
##
## $r2_out_adj
## [1] 0.25
##
## $correct_causal_direction
## [1] FALSE
##
## $steiger_test
## [1] 0
##
## $correct_causal_direction_adj
## [1] FALSE
##
## $steiger_test_adj
## [1] 0
##
## $vz
## [1] NaN
##
## $vz0
## [1] 0
##
## $vz1
## [1] NaN
##
## $sensitivity_ratio
## [1] NaN
##
## $sensitivity_plot
## $beta.hat
## [1] -0.02158423
##
## $beta.se
## [1] 0.09058503
##
## $beta.p.value
## [1] 0.8116671
##
## $naive.se
## [1] 0.0901482
##
## $chi.sq.test
## [1] 96.31883
## over.dispersion loss.function beta.hat beta.se
## 1 FALSE l2 -0.02158423 0.09058503
## 2 FALSE huber -0.03384769 0.09293915
## 3 FALSE tukey -0.03399085 0.09293933
## 4 TRUE l2 -0.02255761 0.09770638
## 5 TRUE huber -0.03664930 0.10136241
## 6 TRUE tukey -0.03232759 0.10111534
##
## MR-Lasso method
##
## Number of variants : 81
## Number of valid instruments : 78
## Tuning parameter : 0.2830687
## ------------------------------------------------------------------
## Exposure Estimate Std Error 95% CI p-value
## exposure -0.070 0.090 -0.247, 0.107 0.436
## ------------------------------------------------------------------
##
## Constrained maximum likelihood method (MRcML)
## Number of Variants: 81
## Results for: cML-MA-BIC
## ------------------------------------------------------------------
## Method Estimate SE Pvalue 95% CI
## cML-MA-BIC -0.024 0.091 0.788 [-0.202,0.153]
## ------------------------------------------------------------------
##
## Debiased inverse-variance weighted method
## (Over.dispersion:TRUE)
##
## Number of Variants : 81
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value Condition
## dIVW -0.022 0.100 -0.217, 0.174 0.829 968.842
## ------------------------------------------------------------------
##
## Mode-based method of Hartwig et al
## (weighted, delta standard errors [not assuming NOME], bandwidth factor = 1)
##
## Number of Variants : 81
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## MBE -0.024 0.146 -0.310, 0.261 0.867
## ------------------------------------------------------------------
Title: Investigating the causality between 25-Hydroxyvitamin D level on fT4
1- Number of total SNPs in exposure: 7,250,104 SNPs
2- Number of SNPs exposure with p-value < \(5 \times 10^-8\): 16,012 SNPs
3- Number of SNPs exposure after clumping : 115 SNPs
4- Number of total SNPs in outcome: 7,745,739 SNPs
5- Number of common variants between exposure and outcome: 101 SNPs
6- Number of SNPs after harmonization (action=3) = 84 SNPs
7- Number of SNPs after removing HLA region with exploring in HLA Genes, Nomenclature = 84 SNP (rs28407950 was removed)
8- Number of SNPs after removing those that have MAF < 0.01 = 84 SNPs
10- Checking pleiotropy by PhenoScanner:
How many SNPs have been eliminated after checking the PhenoScanner website: 0 SNPs
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 29.78 36.14 43.18 121.47 70.46 2567.54
How many SNPs have been eliminated with checking the weakness: 0 SNP
id.exposure | id.outcome | outcome | exposure | method | nsnp | b | se | pval |
---|---|---|---|---|---|---|---|---|
oUw2e5 | daasDf | outcome | exposure | MR Egger | 84 | -0.0418438 | 0.0854867 | 0.6258107 |
oUw2e5 | daasDf | outcome | exposure | Weighted median | 84 | 0.0722727 | 0.0617734 | 0.2420150 |
oUw2e5 | daasDf | outcome | exposure | Inverse variance weighted | 84 | 0.0122784 | 0.0543298 | 0.8212032 |
oUw2e5 | daasDf | outcome | exposure | Simple mode | 84 | 0.0189745 | 0.1576589 | 0.9044954 |
oUw2e5 | daasDf | outcome | exposure | Weighted mode | 84 | 0.0498572 | 0.0567387 | 0.3820925 |
id.exposure | id.outcome | outcome | exposure | method | Q | Q_df | Q_pval |
---|---|---|---|---|---|---|---|
oUw2e5 | daasDf | outcome | exposure | MR Egger | 198.4561 | 82 | 0 |
oUw2e5 | daasDf | outcome | exposure | Inverse variance weighted | 200.0878 | 83 | 0 |
id.exposure | id.outcome | outcome | exposure | egger_intercept | se | pval |
---|---|---|---|---|---|---|
oUw2e5 | daasDf | outcome | exposure | 0.0018081 | 0.0022021 | 0.413966 |
## [1] "Two SNPs (rs12317268 and rs7439366) were detected by MRPRESSO and excluded for further analyses"
id.exposure | id.outcome | outcome | exposure | method | nsnp | b | se | pval |
---|---|---|---|---|---|---|---|---|
oUw2e5 | daasDf | outcome | exposure | MR Egger | 82 | -0.0185637 | 0.0754185 | 0.8062026 |
oUw2e5 | daasDf | outcome | exposure | Weighted median | 82 | 0.0730557 | 0.0619674 | 0.2384231 |
oUw2e5 | daasDf | outcome | exposure | Inverse variance weighted | 82 | 0.0507501 | 0.0486693 | 0.2970623 |
oUw2e5 | daasDf | outcome | exposure | Simple mode | 82 | 0.0252830 | 0.1530636 | 0.8692142 |
oUw2e5 | daasDf | outcome | exposure | Weighted mode | 82 | 0.0432513 | 0.0609228 | 0.4797819 |
id.exposure | id.outcome | outcome | exposure | method | Q | Q_df | Q_pval |
---|---|---|---|---|---|---|---|
oUw2e5 | daasDf | outcome | exposure | MR Egger | 149.4853 | 80 | 4.1e-06 |
oUw2e5 | daasDf | outcome | exposure | Inverse variance weighted | 152.1795 | 81 | 2.9e-06 |
id.exposure | id.outcome | outcome | exposure | egger_intercept | se | pval |
---|---|---|---|---|---|---|
oUw2e5 | daasDf | outcome | exposure | 0.0023277 | 0.0019385 | 0.2333822 |
##
## Radial IVW
##
## Estimate Std.Error t value Pr(>|t|)
## Effect (Mod.2nd) 0.05074888 0.04866908 1.0427335 0.2970718
## Iterative 0.05074888 0.04866908 1.0427335 0.2970718
## Exact (FE) 0.05160059 0.03551133 1.4530740 0.1462032
## Exact (RE) 0.05120977 0.05328849 0.9609911 0.3394166
##
##
## Residual standard error: 1.371 on 81 degrees of freedom
##
## F-statistic: 1.09 on 1 and 81 DF, p-value: 0.3
## Q-Statistic for heterogeneity: 152.146 on 81 DF , p-value: 2.936746e-06
##
## No significant outliers
## Number of iterations = 2
## [1] "No significant outliers"
In statistics, Cook’s distance or Cook’s D is a commonly used estimate of the influence of a data point when performing a least-squares regression analysis.[1] In a practical ordinary least squares analysis, Cook’s distance can be used in several ways:
1- To indicate influential data points that are particularly worth checking for validity.
2- To indicate regions of the design space where it would be good to be able to obtain more data points.
It is named after the American statistician R. Dennis Cook, who introduced the concept in 1977.
## 12 20 21 25 29 31 50
## 0.03515705 0.04136593 0.25701721 0.03762193 0.08422961 0.08033235 0.03836803
## 67
## 0.06786057
id.exposure | id.outcome | outcome | exposure | method | nsnp | b | se | pval |
---|---|---|---|---|---|---|---|---|
oUw2e5 | daasDf | outcome | exposure | MR Egger | 70 | 0.2466067 | 0.1387102 | 0.0798986 |
oUw2e5 | daasDf | outcome | exposure | Weighted median | 70 | 0.2233635 | 0.0803358 | 0.0054296 |
oUw2e5 | daasDf | outcome | exposure | Inverse variance weighted | 70 | 0.2035989 | 0.0563823 | 0.0003050 |
oUw2e5 | daasDf | outcome | exposure | Simple mode | 70 | 0.0316973 | 0.1772358 | 0.8585853 |
oUw2e5 | daasDf | outcome | exposure | Weighted mode | 70 | 0.2194134 | 0.1176407 | 0.0664179 |
id.exposure | id.outcome | outcome | exposure | method | Q | Q_df | Q_pval |
---|---|---|---|---|---|---|---|
oUw2e5 | daasDf | outcome | exposure | MR Egger | 86.59380 | 68 | 0.0636779 |
oUw2e5 | daasDf | outcome | exposure | Inverse variance weighted | 86.74083 | 69 | 0.0731205 |
id.exposure | id.outcome | outcome | exposure | egger_intercept | se | pval |
---|---|---|---|---|---|---|
oUw2e5 | daasDf | outcome | exposure | -0.0008971 | 0.00264 | 0.735061 |
##
## Inverse-variance weighted method
## (variants uncorrelated, random-effect model)
##
## Number of Variants : 70
##
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## IVW 0.204 0.056 0.093, 0.314 0.000
## ------------------------------------------------------------------
## Residual standard error = 1.121
## Heterogeneity test statistic (Cochran's Q) = 86.7408 on 69 degrees of freedom, (p-value = 0.0731). I^2 = 20.5%.
## Method Estimate Std Error 95% CI P-value
## Simple median 0.123 0.080 -0.034 0.280 0.125
## Weighted median 0.224 0.080 0.068 0.381 0.005
## Penalized weighted median 0.223 0.080 0.066 0.380 0.005
##
## IVW 0.204 0.056 0.093 0.314 0.000
## Penalized IVW 0.204 0.056 0.093 0.314 0.000
## Robust IVW 0.193 0.060 0.075 0.310 0.001
## Penalized robust IVW 0.193 0.060 0.075 0.310 0.001
##
## MR-Egger 0.247 0.139 -0.025 0.518 0.075
## (intercept) -0.001 0.003 -0.006 0.004 0.734
## Penalized MR-Egger 0.247 0.139 -0.025 0.518 0.075
## (intercept) -0.001 0.003 -0.006 0.004 0.734
## Robust MR-Egger 0.276 0.117 0.046 0.507 0.018
## (intercept) -0.002 0.003 -0.007 0.003 0.486
## Penalized robust MR-Egger 0.276 0.117 0.046 0.507 0.018
## (intercept) -0.002 0.003 -0.007 0.003 0.486
id.exposure | id.outcome | exposure | outcome | snp_r2.exposure | snp_r2.outcome | correct_causal_direction | steiger_pval |
---|---|---|---|---|---|---|---|
oUw2e5 | daasDf | exposure | outcome | 0.0109999 | 0.0020872 | TRUE | 0 |
## $r2_exp
## [1] 0
##
## $r2_out
## [1] 0.25
##
## $r2_exp_adj
## [1] 0
##
## $r2_out_adj
## [1] 0.25
##
## $correct_causal_direction
## [1] FALSE
##
## $steiger_test
## [1] 0
##
## $correct_causal_direction_adj
## [1] FALSE
##
## $steiger_test_adj
## [1] 0
##
## $vz
## [1] NaN
##
## $vz0
## [1] 0
##
## $vz1
## [1] NaN
##
## $sensitivity_ratio
## [1] NaN
##
## $sensitivity_plot
## $beta.hat
## [1] 0.2075324
##
## $beta.se
## [1] 0.05105289
##
## $beta.p.value
## [1] 4.80227e-05
##
## $naive.se
## [1] 0.05066738
##
## $chi.sq.test
## [1] 86.42346
## over.dispersion loss.function beta.hat beta.se
## 1 FALSE l2 0.2075324 0.05105289
## 2 FALSE huber 0.1909614 0.05234920
## 3 FALSE tukey 0.1939161 0.05235445
## 4 TRUE l2 0.2049852 0.05640578
## 5 TRUE huber 0.1923723 0.05880302
## 6 TRUE tukey 0.1963334 0.05908604
##
## Constrained maximum likelihood method (MRcML)
## Number of Variants: 70
## Results for: cML-MA-BIC
## ------------------------------------------------------------------
## Method Estimate SE Pvalue 95% CI
## cML-MA-BIC 0.207 0.051 0.000 [0.107,0.307]
## ------------------------------------------------------------------
##
## Debiased inverse-variance weighted method
## (Over.dispersion:TRUE)
##
## Number of Variants : 70
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value Condition
## dIVW 0.207 0.057 0.095, 0.319 0.000 540.818
## ------------------------------------------------------------------
##
## Mode-based method of Hartwig et al
## (weighted, delta standard errors [not assuming NOME], bandwidth factor = 1)
##
## Number of Variants : 70
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## MBE 0.219 0.081 0.060, 0.379 0.007
## ------------------------------------------------------------------
Title: Investigating the causality between 25-Hydroxyvitamin D level on TSH
1- Number of total SNPs in exposure: 7,250,104 SNPs
2- Number of SNPs exposure with p-value < \(5 \times 10^-8\): 16,012 SNPs
3- Number of SNPs exposure after clumping : 115 SNPs
4- Number of total SNPs in outcome: 7,742,681 SNPs
5- Number of common variants between exposure and outcome: 101 SNPs
6- Number of SNPs after harmonization (action=3) = 84 SNPs
7- Number of SNPs after removing HLA region with exploring in HLA Genes, Nomenclature = 84 SNP
8- Number of SNPs after removing those that have MAF < 0.01 = 84 SNPs
10- Checking pleiotropy by PhenoScanner:
How many SNPs have been eliminated after checking the PhenoScanner website: 1 SNP (rs73413596)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 29.78 36.14 43.24 122.48 70.86 2567.54
How many SNPs have been eliminated with checking the weakness: 0 SNP
id.exposure | id.outcome | outcome | exposure | method | nsnp | b | se | pval |
---|---|---|---|---|---|---|---|---|
qxmOS6 | 7CyyhT | outcome | exposure | MR Egger | 83 | -0.0282157 | 0.0675033 | 0.6770598 |
qxmOS6 | 7CyyhT | outcome | exposure | Weighted median | 83 | -0.0145698 | 0.0542339 | 0.7882004 |
qxmOS6 | 7CyyhT | outcome | exposure | Inverse variance weighted | 83 | -0.0469732 | 0.0427422 | 0.2717736 |
qxmOS6 | 7CyyhT | outcome | exposure | Simple mode | 83 | -0.0636091 | 0.1114217 | 0.5696380 |
qxmOS6 | 7CyyhT | outcome | exposure | Weighted mode | 83 | -0.0429973 | 0.0481854 | 0.3748270 |
id.exposure | id.outcome | outcome | exposure | method | Q | Q_df | Q_pval |
---|---|---|---|---|---|---|---|
qxmOS6 | 7CyyhT | outcome | exposure | MR Egger | 138.6384 | 81 | 7.07e-05 |
qxmOS6 | 7CyyhT | outcome | exposure | Inverse variance weighted | 138.8606 | 82 | 8.97e-05 |
id.exposure | id.outcome | outcome | exposure | egger_intercept | se | pval |
---|---|---|---|---|---|---|
qxmOS6 | 7CyyhT | outcome | exposure | -0.0006249 | 0.0017343 | 0.7195554 |
## [1] "One SNP (rs532436) was detected by MRPRESSO and excluded for further analyses"
id.exposure | id.outcome | outcome | exposure | method | nsnp | b | se | pval |
---|---|---|---|---|---|---|---|---|
qxmOS6 | 7CyyhT | outcome | exposure | MR Egger | 82 | -0.0331682 | 0.0543454 | 0.5433790 |
qxmOS6 | 7CyyhT | outcome | exposure | Weighted median | 82 | -0.0145490 | 0.0546133 | 0.7899313 |
qxmOS6 | 7CyyhT | outcome | exposure | Inverse variance weighted | 82 | -0.0295222 | 0.0344758 | 0.3918233 |
qxmOS6 | 7CyyhT | outcome | exposure | Simple mode | 82 | -0.0579555 | 0.1092497 | 0.5972258 |
qxmOS6 | 7CyyhT | outcome | exposure | Weighted mode | 82 | -0.0372654 | 0.0476711 | 0.4366590 |
id.exposure | id.outcome | outcome | exposure | method | Q | Q_df | Q_pval |
---|---|---|---|---|---|---|---|
qxmOS6 | 7CyyhT | outcome | exposure | MR Egger | 88.73302 | 80 | 0.2360567 |
qxmOS6 | 7CyyhT | outcome | exposure | Inverse variance weighted | 88.74145 | 81 | 0.2604797 |
id.exposure | id.outcome | outcome | exposure | egger_intercept | se | pval |
---|---|---|---|---|---|---|
qxmOS6 | 7CyyhT | outcome | exposure | 0.0001221 | 0.0014005 | 0.9307676 |
##
## Radial IVW
##
## Estimate Std.Error t value Pr(>|t|)
## Effect (Mod.2nd) -0.02952200 0.03447575 -0.8563121 0.3918252
## Iterative -0.02952200 0.03447575 -0.8563121 0.3918252
## Exact (FE) -0.02979675 0.03293912 -0.9046008 0.3656769
## Exact (RE) -0.02979331 0.03355018 -0.8880223 0.3771582
##
##
## Residual standard error: 1.047 on 81 degrees of freedom
##
## F-statistic: 0.73 on 1 and 81 DF, p-value: 0.394
## Q-Statistic for heterogeneity: 88.73384 on 81 DF , p-value: 0.2606622
##
## No significant outliers
## Number of iterations = 2
## [1] "No significant outliers"
##
## Inverse-variance weighted method
## (variants uncorrelated, random-effect model)
##
## Number of Variants : 82
##
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## IVW -0.030 0.034 -0.097, 0.038 0.392
## ------------------------------------------------------------------
## Residual standard error = 1.047
## Heterogeneity test statistic (Cochran's Q) = 88.7414 on 81 degrees of freedom, (p-value = 0.2605). I^2 = 8.7%.
## Method Estimate Std Error 95% CI P-value
## Simple median -0.031 0.059 -0.145 0.084 0.602
## Weighted median -0.015 0.055 -0.123 0.094 0.792
## Penalized weighted median -0.015 0.056 -0.123 0.094 0.794
##
## IVW -0.030 0.034 -0.097 0.038 0.392
## Penalized IVW -0.030 0.034 -0.097 0.038 0.392
## Robust IVW -0.028 0.032 -0.090 0.034 0.383
## Penalized robust IVW -0.028 0.032 -0.090 0.034 0.383
##
## MR-Egger -0.033 0.054 -0.140 0.073 0.542
## (intercept) 0.000 0.001 -0.003 0.003 0.931
## Penalized MR-Egger -0.033 0.054 -0.140 0.073 0.541
## (intercept) 0.000 0.001 -0.003 0.003 0.930
## Robust MR-Egger -0.032 0.049 -0.128 0.063 0.507
## (intercept) 0.000 0.001 -0.003 0.003 0.910
## Penalized robust MR-Egger -0.032 0.049 -0.128 0.063 0.507
## (intercept) 0.000 0.001 -0.003 0.003 0.910
id.exposure | id.outcome | exposure | outcome | snp_r2.exposure | snp_r2.outcome | correct_causal_direction | steiger_pval |
---|---|---|---|---|---|---|---|
qxmOS6 | 7CyyhT | exposure | outcome | 0.0192884 | 0.0016496 | TRUE | 0 |
## $r2_exp
## [1] 0
##
## $r2_out
## [1] 0.25
##
## $r2_exp_adj
## [1] 0
##
## $r2_out_adj
## [1] 0.25
##
## $correct_causal_direction
## [1] FALSE
##
## $steiger_test
## [1] 0
##
## $correct_causal_direction_adj
## [1] FALSE
##
## $steiger_test_adj
## [1] 0
##
## $vz
## [1] NaN
##
## $vz0
## [1] 0
##
## $vz1
## [1] NaN
##
## $sensitivity_ratio
## [1] NaN
##
## $sensitivity_plot
## $beta.hat
## [1] -0.02980411
##
## $beta.se
## [1] 0.03321019
##
## $beta.p.value
## [1] 0.3694849
##
## $naive.se
## [1] 0.03306716
##
## $chi.sq.test
## [1] 88.73377
## over.dispersion loss.function beta.hat beta.se
## 1 FALSE l2 -0.02980411 0.03321019
## 2 FALSE huber -0.02894143 0.03407276
## 3 FALSE tukey -0.02726968 0.03407253
## 4 TRUE l2 -0.03147601 0.03461906
## 5 TRUE huber -0.03107808 0.03698782
## 6 TRUE tukey -0.03009628 0.03673932
##
## Constrained maximum likelihood method (MRcML)
## Number of Variants: 82
## Results for: cML-MA-BIC
## ------------------------------------------------------------------
## Method Estimate SE Pvalue 95% CI
## cML-MA-BIC -0.030 0.033 0.371 [-0.094,0.035]
## ------------------------------------------------------------------
##
## Debiased inverse-variance weighted method
## (Over.dispersion:TRUE)
##
## Number of Variants : 82
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value Condition
## dIVW -0.030 0.034 -0.097, 0.038 0.388 1108.127
## ------------------------------------------------------------------
##
## Mode-based method of Hartwig et al
## (weighted, delta standard errors [not assuming NOME], bandwidth factor = 1)
##
## Number of Variants : 82
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## MBE -0.037 0.059 -0.153, 0.079 0.529
## ------------------------------------------------------------------