Exposure 1: Smoking Initiation on Graves’ disease (GD)
Exposure 2: Age of Initiation Smoking on Graves’ disease (GD)
Exposure 3: Cigarettes per day on Graves’ disease (GD)
Exposure 4: Life time smoking on Graves’ disease (GD)
Title: Investigating the causality between Smoking Initiation on GD
Sample size:341,427
Sample size: 458,620 , Number of cases: 1,678 , Number of controls: 456,942
1- Number of total SNPs in exposure: 25,008 SNPs (<\(5 \times 10^-8\))
2- Number of SNPs exposure with p-value < \(5 \times 10^-8\): 7,846 SNPs
3- Number of SNPs exposure after clumping : 93 SNPs
4- Number of total SNPs in outcome: 23,868 SNPs
5- Number of common variants between exposure and outcome: 90 SNPs (“rs10114490” “rs72896886” “rs56820925 have been eliminated)
6- Number of SNPs after replacing proxies: 3 SNPs from NIH LDproxy database according to EUR ancestry have been selected: We replace “rs10114490” , “rs72896886” and “rs56820925 by rs7871108&rs72896891&rs57703976 with R2 1 & 0.91 & 1, respectively).So, 93 SNPs remained.
7- Number of SNPs after harmonization (action=2) = 84 SNPs (Removing the following SNPs for incompatible alleles: rs13246563, rs72896886 and Removing the following SNPs for being palindromic with intermediate allele frequencies: rs10956809, rs1160685, rs13246563, rs2186122, rs6508144, rs7585579, rs7921378, rs9540729)
8- Number of SNPs after removing HLA region with exploring in HLA Genes, Nomenclature = 84 SNP
9- Number of SNPs after removing those that have MAF < 0.01 = 84 SNPs
10- Checking pleiotropy by PhenoScanner:
How many SNPs have been eliminated after checking the PhenoScanner website: 84 SNPs
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 29.80 31.95 35.45 42.68 46.50 145.00
How many SNPs have been eliminated with checking the weakness: 0 SNP
## id.exposure id.outcome outcome exposure method nsnp
## 1 Tq1nmA wKlseC outcome exposure MR Egger 84
## 2 Tq1nmA wKlseC outcome exposure Weighted median 84
## 3 Tq1nmA wKlseC outcome exposure Inverse variance weighted 84
## 4 Tq1nmA wKlseC outcome exposure Simple mode 84
## 5 Tq1nmA wKlseC outcome exposure Weighted mode 84
## b se pval
## 1 -0.09125143 0.8483600 0.9146058
## 2 0.24684067 0.2457584 0.3151840
## 3 -0.03829324 0.1687440 0.8204775
## 4 0.66388271 0.6027112 0.2738658
## 5 0.58120491 0.5665021 0.3078942
## id.exposure id.outcome outcome exposure method Q
## 1 Tq1nmA wKlseC outcome exposure MR Egger 82.76598
## 2 Tq1nmA wKlseC outcome exposure Inverse variance weighted 82.77008
## Q_df Q_pval
## 1 82 0.4555403
## 2 83 0.4864693
## id.exposure id.outcome outcome exposure egger_intercept se pval
## 1 Tq1nmA wKlseC outcome exposure 0.001404963 0.02205274 0.9493568
## $`Main MR results`
## Exposure MR Analysis Causal Estimate Sd T-stat
## 1 beta.exposure Raw -0.03829324 0.1685102 -0.2272459
## 2 beta.exposure Outlier-corrected NA NA NA
## P-value
## 1 0.8207914
## 2 NA
##
## $`MR-PRESSO results`
## $`MR-PRESSO results`$`Global Test`
## $`MR-PRESSO results`$`Global Test`$RSSobs
## [1] 84.68025
##
## $`MR-PRESSO results`$`Global Test`$Pvalue
## [1] 0.478
## id.exposure id.outcome outcome exposure method nsnp
## 1 Tq1nmA wKlseC outcome exposure MR Egger 84
## 2 Tq1nmA wKlseC outcome exposure Weighted median 84
## 3 Tq1nmA wKlseC outcome exposure Inverse variance weighted 84
## 4 Tq1nmA wKlseC outcome exposure Simple mode 84
## 5 Tq1nmA wKlseC outcome exposure Weighted mode 84
## b se pval
## 1 -0.09125143 0.8483600 0.9146058
## 2 0.24684067 0.2428262 0.3093761
## 3 -0.03829324 0.1687440 0.8204775
## 4 0.66388271 0.5925601 0.2657903
## 5 0.58120491 0.5739547 0.3141789
## id.exposure id.outcome outcome exposure method Q
## 1 Tq1nmA wKlseC outcome exposure MR Egger 82.76598
## 2 Tq1nmA wKlseC outcome exposure Inverse variance weighted 82.77008
## Q_df Q_pval
## 1 82 0.4555403
## 2 83 0.4864693
## id.exposure id.outcome outcome exposure egger_intercept se pval
## 1 Tq1nmA wKlseC outcome exposure 0.001404963 0.02205274 0.9493568
##
## Radial IVW
##
## Estimate Std.Error t value Pr(>|t|)
## Effect (Mod.2nd) -0.03829345 0.1685102 -0.2272470 0.8202317
## Iterative -0.03829345 0.1685102 -0.2272470 0.8202317
## Exact (FE) -0.03917752 0.1687454 -0.2321695 0.8164064
## Exact (RE) -0.03918637 0.1724962 -0.2271723 0.8208483
##
##
## Residual standard error: 0.999 on 83 degrees of freedom
##
## F-statistic: 0.05 on 1 and 83 DF, p-value: 0.821
## Q-Statistic for heterogeneity: 82.7689 on 83 DF , p-value: 0.4865057
##
## No significant outliers
## Number of iterations = 2
## [1] "No significant outliers"
In statistics, Cook’s distance or Cook’s D is a commonly used estimate of the influence of a data point when performing a least-squares regression analysis.[1] In a practical ordinary least squares analysis, Cook’s distance can be used in several ways:
1- To indicate influential data points that are particularly worth checking for validity.
2- To indicate regions of the design space where it would be good to be able to obtain more data points.
It is named after the American statistician R. Dennis Cook, who introduced the concept in 1977.
## 20 22 23 25 66 73 77
## 0.14237308 0.05712271 0.07812693 0.07705094 0.05064444 0.07619427 0.05108820
## id.exposure id.outcome outcome exposure method nsnp
## 1 Tq1nmA wKlseC outcome exposure MR Egger 65
## 2 Tq1nmA wKlseC outcome exposure Weighted median 65
## 3 Tq1nmA wKlseC outcome exposure Inverse variance weighted 65
## 4 Tq1nmA wKlseC outcome exposure Simple mode 65
## 5 Tq1nmA wKlseC outcome exposure Weighted mode 65
## b se pval
## 1 0.2718293 0.9183576 0.76820739
## 2 0.4431695 0.2616346 0.09029398
## 3 0.4080681 0.1900178 0.03175145
## 4 0.7028273 0.6093891 0.25306373
## 5 0.6834861 0.5736731 0.23788812
## id.exposure id.outcome outcome exposure method Q
## 1 Tq1nmA wKlseC outcome exposure MR Egger 36.59845
## 2 Tq1nmA wKlseC outcome exposure Inverse variance weighted 36.62145
## Q_df Q_pval
## 1 63 0.9968696
## 2 64 0.9976589
## id.exposure id.outcome outcome exposure egger_intercept se pval
## 1 Tq1nmA wKlseC outcome exposure 0.003634029 0.02396613 0.8799618
##
## Inverse-variance weighted method
## (variants uncorrelated, random-effect model)
##
## Number of Variants : 65
##
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## IVW 0.408 0.190 0.036, 0.780 0.032
## ------------------------------------------------------------------
## Residual standard error = 0.756
## Residual standard error is set to 1 in calculation of confidence interval when its estimate is less than 1.
## Heterogeneity test statistic (Cochran's Q) = 36.6214 on 64 degrees of freedom, (p-value = 0.9977). I^2 = 0.0%.
## Method Estimate Std Error 95% CI P-value
## Simple median 0.485 0.267 -0.038 1.007 0.069
## Weighted median 0.451 0.264 -0.066 0.969 0.087
## Penalized weighted median 0.440 0.264 -0.078 0.958 0.096
##
## IVW 0.408 0.190 0.036 0.780 0.032
## Penalized IVW 0.408 0.190 0.036 0.780 0.032
## Robust IVW 0.408 0.199 0.018 0.798 0.040
## Penalized robust IVW 0.408 0.199 0.018 0.798 0.040
##
## MR-Egger 0.272 0.918 -1.528 2.072 0.767
## (intercept) 0.004 0.024 -0.043 0.051 0.879
## Penalized MR-Egger 0.272 0.918 -1.528 2.072 0.767
## (intercept) 0.004 0.024 -0.043 0.051 0.879
## Robust MR-Egger 0.246 0.979 -1.673 2.164 0.802
## (intercept) 0.004 0.025 -0.045 0.054 0.865
## Penalized robust MR-Egger 0.246 0.979 -1.673 2.164 0.802
## (intercept) 0.004 0.025 -0.045 0.054 0.865
id.exposure | id.outcome | exposure | outcome | snp_r2.exposure | snp_r2.outcome | correct_causal_direction | steiger_pval |
---|---|---|---|---|---|---|---|
Tq1nmA | wKlseC | exposure | outcome | 0.0081828 | 8.99e-05 | TRUE | 0 |
## $r2_exp
## [1] 0
##
## $r2_out
## [1] 0.25
##
## $r2_exp_adj
## [1] 0
##
## $r2_out_adj
## [1] 0.25
##
## $correct_causal_direction
## [1] FALSE
##
## $steiger_test
## [1] 0
##
## $correct_causal_direction_adj
## [1] FALSE
##
## $steiger_test_adj
## [1] 0
##
## $vz
## [1] NaN
##
## $vz0
## [1] 0
##
## $vz1
## [1] NaN
##
## $sensitivity_ratio
## [1] NaN
##
## $sensitivity_plot
## $beta.hat
## [1] 0.413683
##
## $beta.se
## [1] 0.1956862
##
## $beta.p.value
## [1] 0.03451424
##
## $naive.se
## [1] 0.1933894
##
## $chi.sq.test
## [1] 36.55829
## over.dispersion loss.function beta.hat beta.se
## 1 FALSE l2 0.4136830 0.1956862
## 2 FALSE huber 0.4070273 0.2007585
## 3 FALSE tukey 0.4115066 0.2007664
## 4 TRUE l2 0.4136829 0.1956947
## 5 TRUE huber 0.4070274 0.2007669
## 6 TRUE tukey 0.4115066 0.2007752
##
## MR-Lasso method
##
## Number of variants : 65
## Number of valid instruments : 65
## Tuning parameter : 0.2946335
## ------------------------------------------------------------------
## Exposure Estimate Std Error 95% CI p-value
## exposure 0.408 0.190 0.036, 0.780 0.032
## ------------------------------------------------------------------
##
## Constrained maximum likelihood method (MRcML)
## Number of Variants: 65
## Results for: cML-MA-BIC
## ------------------------------------------------------------------
## Method Estimate SE Pvalue 95% CI
## cML-MA-BIC 0.412 0.192 0.031 [0.037,0.788]
## ------------------------------------------------------------------
##
## Debiased inverse-variance weighted method
## (Over.dispersion:TRUE)
##
## Number of Variants : 65
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value Condition
## dIVW 0.418 0.195 0.036, 0.799 0.032 338.528
## ------------------------------------------------------------------
##
## Mode-based method of Hartwig et al
## (weighted, delta standard errors [not assuming NOME], bandwidth factor = 1)
##
## Number of Variants : 65
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## MBE 0.683 0.593 -0.479, 1.846 0.249
## ------------------------------------------------------------------
Title: Investigating the causality between Age Of Initiation Smoking on GD
1- Number of total SNPs in exposure: 2,076 SNPs
2- Number of SNPs exposure with p-value < \(10^-8\) = 447 SNPs
3- Number of SNPs exposure after clumping = 7 SNPs
4- Number of total SNPs in outcome: 1,968 SNPs
5- Number of common variants between exposure and outcome:7
6- Number of SNPs after replacing proxies: -
7- Number of SNPs after harmonization (action=2) = 7 SNPs
8- Number of SNPs after removing HLA region with exploring in HLA Genes, Nomenclature = 7 SNP
9- Number of SNPs after removing those that have MAF < 0.01 = 7 SNPs
10- Checking pleiotropy by PhenoScanner:
How many SNPs have been eliminated after checking the PhenoScanner website: 7 SNPs
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 30.70 32.65 33.40 39.20 46.15 52.70
How many SNPs have been eliminated with checking the weakness: 0 SNP
## id.exposure id.outcome outcome exposure method nsnp
## 1 poh7vM tYC4bs outcome exposure MR Egger 7
## 2 poh7vM tYC4bs outcome exposure Weighted median 7
## 3 poh7vM tYC4bs outcome exposure Inverse variance weighted 7
## 4 poh7vM tYC4bs outcome exposure Simple mode 7
## 5 poh7vM tYC4bs outcome exposure Weighted mode 7
## b se pval
## 1 3.3133470 2.607398 0.2597313
## 2 1.3987757 1.065708 0.1893408
## 3 1.2576244 0.835104 0.1320802
## 4 0.4435410 1.599845 0.7909001
## 5 0.9554978 1.404340 0.5216325
## id.exposure id.outcome outcome exposure method Q
## 1 poh7vM tYC4bs outcome exposure MR Egger 5.741414
## 2 poh7vM tYC4bs outcome exposure Inverse variance weighted 6.541648
## Q_df Q_pval
## 1 5 0.3321991
## 2 6 0.3653194
## id.exposure id.outcome outcome exposure egger_intercept se pval
## 1 poh7vM tYC4bs outcome exposure -0.04724274 0.05659145 0.4418768
## $`Main MR results`
## Exposure MR Analysis Causal Estimate Sd T-stat P-value
## 1 beta.exposure Raw 1.257624 0.835104 1.505949 0.1827924
## 2 beta.exposure Outlier-corrected NA NA NA NA
##
## $`MR-PRESSO results`
## $`MR-PRESSO results`$`Global Test`
## $`MR-PRESSO results`$`Global Test`$RSSobs
## [1] 8.562676
##
## $`MR-PRESSO results`$`Global Test`$Pvalue
## [1] 0.446
## id.exposure id.outcome outcome exposure method nsnp
## 1 poh7vM tYC4bs outcome exposure MR Egger 7
## 2 poh7vM tYC4bs outcome exposure Weighted median 7
## 3 poh7vM tYC4bs outcome exposure Inverse variance weighted 7
## 4 poh7vM tYC4bs outcome exposure Simple mode 7
## 5 poh7vM tYC4bs outcome exposure Weighted mode 7
## b se pval
## 1 3.3133470 2.607398 0.2597313
## 2 1.3987757 1.092365 0.2003688
## 3 1.2576244 0.835104 0.1320802
## 4 0.4435410 1.602862 0.7912822
## 5 0.9554978 1.369968 0.5116219
## id.exposure id.outcome outcome exposure method Q
## 1 poh7vM tYC4bs outcome exposure MR Egger 5.741414
## 2 poh7vM tYC4bs outcome exposure Inverse variance weighted 6.541648
## Q_df Q_pval
## 1 5 0.3321991
## 2 6 0.3653194
## id.exposure id.outcome outcome exposure egger_intercept se pval
## 1 poh7vM tYC4bs outcome exposure -0.04724274 0.05659145 0.4418768
##
## Radial IVW
##
## Estimate Std.Error t value Pr(>|t|)
## Effect (Mod.2nd) 1.258673 0.8356837 1.506160 0.1320261
## Iterative 1.258675 0.8356846 1.506160 0.1320260
## Exact (FE) 1.286563 0.8038056 1.600590 0.1094678
## Exact (RE) 1.284338 0.7257424 1.769688 0.1271788
##
##
## Residual standard error: 1.04 on 6 degrees of freedom
##
## F-statistic: 2.27 on 1 and 6 DF, p-value: 0.183
## Q-Statistic for heterogeneity: 6.488224 on 6 DF , p-value: 0.3707738
##
## No significant outliers
## Number of iterations = 3
## [1] "No significant outliers"
In statistics, Cook’s distance or Cook’s D is a commonly used estimate of the influence of a data point when performing a least-squares regression analysis.[1] In a practical ordinary least squares analysis, Cook’s distance can be used in several ways:
1- To indicate influential data points that are particularly worth checking for validity.
2- To indicate regions of the design space where it would be good to be able to obtain more data points.
It is named after the American statistician R. Dennis Cook, who introduced the concept in 1977.
## 3
## 2.950427
## id.exposure id.outcome outcome exposure method nsnp
## 1 poh7vM tYC4bs outcome exposure MR Egger 5
## 2 poh7vM tYC4bs outcome exposure Weighted median 5
## 3 poh7vM tYC4bs outcome exposure Inverse variance weighted 5
## 4 poh7vM tYC4bs outcome exposure Simple mode 5
## 5 poh7vM tYC4bs outcome exposure Weighted mode 5
## b se pval
## 1 1.607576 2.6388686 0.58543258
## 2 1.568729 1.1746335 0.18171103
## 3 2.136997 0.9267736 0.02111923
## 4 1.326165 1.4610788 0.41539488
## 5 1.468391 1.3284507 0.33102058
## id.exposure id.outcome outcome exposure method Q
## 1 poh7vM tYC4bs outcome exposure MR Egger 2.943647
## 2 poh7vM tYC4bs outcome exposure Inverse variance weighted 2.989560
## Q_df Q_pval
## 1 3 0.4003956
## 2 4 0.5595741
## id.exposure id.outcome outcome exposure egger_intercept se pval
## 1 poh7vM tYC4bs outcome exposure 0.01376197 0.06422619 0.8440717
##
## Inverse-variance weighted method
## (variants uncorrelated, random-effect model)
##
## Number of Variants : 5
##
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## IVW 2.137 0.927 0.321, 3.953 0.021
## ------------------------------------------------------------------
## Residual standard error = 0.865
## Residual standard error is set to 1 in calculation of confidence interval when its estimate is less than 1.
## Heterogeneity test statistic (Cochran's Q) = 2.9896 on 4 degrees of freedom, (p-value = 0.5596). I^2 = 0.0%.
## Method Estimate Std Error 95% CI P-value
## Simple median 1.644 1.241 -0.788 4.076 0.185
## Weighted median 1.581 1.127 -0.628 3.791 0.161
## Penalized weighted median 1.581 1.127 -0.628 3.791 0.161
##
## IVW 2.137 0.927 0.321 3.953 0.021
## Penalized IVW 2.137 0.927 0.321 3.953 0.021
## Robust IVW 2.110 0.669 0.798 3.422 0.002
## Penalized robust IVW 2.110 0.669 0.798 3.422 0.002
##
## MR-Egger 1.608 2.639 -3.565 6.780 0.542
## (intercept) 0.014 0.064 -0.112 0.140 0.830
## Penalized MR-Egger 1.608 2.639 -3.565 6.780 0.542
## (intercept) 0.014 0.064 -0.112 0.140 0.830
## Robust MR-Egger 1.583 2.307 -2.939 6.105 0.493
## (intercept) 0.014 0.050 -0.084 0.112 0.783
## Penalized robust MR-Egger 1.583 2.307 -2.939 6.105 0.493
## (intercept) 0.014 0.050 -0.084 0.112 0.783
id.exposure | id.outcome | exposure | outcome | snp_r2.exposure | snp_r2.outcome | correct_causal_direction | steiger_pval |
---|---|---|---|---|---|---|---|
poh7vM | tYC4bs | exposure | outcome | 0.0006169 | 1.81e-05 | TRUE | 0 |
## $r2_exp
## [1] 0
##
## $r2_out
## [1] 0.25
##
## $r2_exp_adj
## [1] 0
##
## $r2_out_adj
## [1] 0.25
##
## $correct_causal_direction
## [1] FALSE
##
## $steiger_test
## [1] 0
##
## $correct_causal_direction_adj
## [1] FALSE
##
## $steiger_test_adj
## [1] 0
##
## $vz
## [1] NaN
##
## $vz0
## [1] 0
##
## $vz1
## [1] NaN
##
## $sensitivity_ratio
## [1] NaN
##
## $sensitivity_plot
## $beta.hat
## [1] 2.165151
##
## $beta.se
## [1] 0.9686016
##
## $beta.p.value
## [1] 0.02539521
##
## $naive.se
## [1] 0.9575782
##
## $chi.sq.test
## [1] 2.92799
## over.dispersion loss.function beta.hat beta.se
## 1 FALSE l2 2.165151 0.9686016
## 2 FALSE huber 2.165151 0.9937637
## 3 FALSE tukey 2.129517 0.9928745
## 4 TRUE l2 2.165153 0.9692145
## 5 TRUE huber 2.165151 0.9944238
## 6 TRUE tukey 2.129518 0.9935361
##
## MR-Lasso method
##
## Number of variants : 5
## Number of valid instruments : 5
## Tuning parameter : 0.5065273
## ------------------------------------------------------------------
## Exposure Estimate Std Error 95% CI p-value
## exposure 2.137 0.927 0.321, 3.953 0.021
## ------------------------------------------------------------------
##
## Constrained maximum likelihood method (MRcML)
## Number of Variants: 5
## Results for: cML-MA-BIC
## ------------------------------------------------------------------
## Method Estimate SE Pvalue 95% CI
## cML-MA-BIC 2.164 0.949 0.023 [0.304,4.023]
## ------------------------------------------------------------------
##
## Debiased inverse-variance weighted method
## (Over.dispersion:TRUE)
##
## Number of Variants : 5
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value Condition
## dIVW 2.187 0.962 0.301, 4.073 0.023 91.947
## ------------------------------------------------------------------
##
## Mode-based method of Hartwig et al
## (weighted, delta standard errors [not assuming NOME], bandwidth factor = 1)
##
## Number of Variants : 5
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## MBE 1.468 1.249 -0.980, 3.916 0.240
## ------------------------------------------------------------------
Title: Investigating the causality between Cigarettes per day on GD
1- Number of total SNPs in exposure: 5,213 SNPs
2- Number of SNPs exposure with p-value < \(10^-8\) = 2,129 SNPs
3- Number of SNPs exposure after clumping = 23 SNPs
4- Number of total SNPs in outcome: 4,943 SNPs
5- Number of common variants between exposure and outcome: 21 SNPs(“rs7951365” and “rs2273500” have been eliminated)
6- Number of SNPs after replacing proxies: 1 SNPs from NIH LDproxy database according to EUR ancestry have been selected: We replace “rs7951365” by rs7933830 with R2 1. So, 22 SNPs remained.
7- Number of SNPs after harmonization (action=2) = 21 SNPs (Removing the following SNPs for being palindromic with intermediate allele frequencies:rs787362)
8- Number of SNPs after removing HLA region with exploring in HLA Genes, Nomenclature = 21 SNP
9- Number of SNPs after removing those that have MAF < 0.01 = 21 SNPs
10- Checking pleiotropy by PhenoScanner:
How many SNPs have been eliminated after checking the PhenoScanner website: 21 SNPs
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 30.90 33.95 36.90 75.55 58.45 366.00
How many SNPs have been eliminated with checking the weakness: 0 SNP
## id.exposure id.outcome outcome exposure method nsnp
## 1 DCkPcM E0lAMo outcome exposure MR Egger 11
## 2 DCkPcM E0lAMo outcome exposure Weighted median 11
## 3 DCkPcM E0lAMo outcome exposure Inverse variance weighted 11
## 4 DCkPcM E0lAMo outcome exposure Simple mode 11
## 5 DCkPcM E0lAMo outcome exposure Weighted mode 11
## b se pval
## 1 0.2468015 0.5054122 0.63700200
## 2 0.4242802 0.2873233 0.13976553
## 3 0.4941513 0.2214949 0.02568225
## 4 0.3028634 0.4142543 0.48149459
## 5 0.3890023 0.3125860 0.24170540
## id.exposure id.outcome outcome exposure method Q
## 1 DCkPcM E0lAMo outcome exposure MR Egger 1.602865
## 2 DCkPcM E0lAMo outcome exposure Inverse variance weighted 1.899316
## Q_df Q_pval
## 1 9 0.9963093
## 2 10 0.9970552
## id.exposure id.outcome outcome exposure egger_intercept se pval
## 1 DCkPcM E0lAMo outcome exposure 0.01463246 0.02687456 0.5993448
## $`Main MR results`
## Exposure MR Analysis Causal Estimate Sd T-stat
## 1 beta.exposure Raw 0.4941513 0.09652998 5.119148
## 2 beta.exposure Outlier-corrected NA NA NA
## P-value
## 1 0.0004512495
## 2 NA
##
## $`MR-PRESSO results`
## $`MR-PRESSO results`$`Global Test`
## $`MR-PRESSO results`$`Global Test`$RSSobs
## [1] 2.164131
##
## $`MR-PRESSO results`$`Global Test`$Pvalue
## [1] 0.995
## id.exposure id.outcome outcome exposure method nsnp
## 1 DCkPcM E0lAMo outcome exposure MR Egger 11
## 2 DCkPcM E0lAMo outcome exposure Weighted median 11
## 3 DCkPcM E0lAMo outcome exposure Inverse variance weighted 11
## 4 DCkPcM E0lAMo outcome exposure Simple mode 11
## 5 DCkPcM E0lAMo outcome exposure Weighted mode 11
## b se pval
## 1 0.2468015 0.5054122 0.63700200
## 2 0.4242802 0.2851799 0.13681336
## 3 0.4941513 0.2214949 0.02568225
## 4 0.3028634 0.4450724 0.51164674
## 5 0.3890023 0.2990912 0.22256335
## id.exposure id.outcome outcome exposure method Q
## 1 DCkPcM E0lAMo outcome exposure MR Egger 1.602865
## 2 DCkPcM E0lAMo outcome exposure Inverse variance weighted 1.899316
## Q_df Q_pval
## 1 9 0.9963093
## 2 10 0.9970552
## id.exposure id.outcome outcome exposure egger_intercept se pval
## 1 DCkPcM E0lAMo outcome exposure 0.01463246 0.02687456 0.5993448
##
## Radial IVW
##
## Estimate Std.Error t value Pr(>|t|)
## Effect (Mod.2nd) 0.4940907 0.09651567 5.119280 3.067048e-07
## Iterative 0.4940907 0.09651567 5.119280 3.067048e-07
## Exact (FE) 0.4952785 0.22216433 2.229334 2.579168e-02
## Exact (RE) 0.4952773 0.09534169 5.194761 4.043473e-04
##
##
## Residual standard error: 0.434 on 10 degrees of freedom
##
## F-statistic: 26.21 on 1 and 10 DF, p-value: 0.000451
## Q-Statistic for heterogeneity: 1.887378 on 10 DF , p-value: 0.9971327
##
## No significant outliers
## Number of iterations = 2
## [1] "No significant outliers"
In statistics, Cook’s distance or Cook’s D is a commonly used estimate of the influence of a data point when performing a least-squares regression analysis.[1] In a practical ordinary least squares analysis, Cook’s distance can be used in several ways:
1- To indicate influential data points that are particularly worth checking for validity.
2- To indicate regions of the design space where it would be good to be able to obtain more data points.
It is named after the American statistician R. Dennis Cook, who introduced the concept in 1977.
par(mfrow = c(2, 2))
model <- lm(data$beta.outcome~data$beta.exposure-1)
plot(model)
par(mfrow = c(1, 1))
cooksD <- cooks.distance(model)
influential <- cooksD[(cooksD > (3 * mean(cooksD, na.rm = TRUE)))]
influential
## 5
## 0.2299813
## id.exposure id.outcome outcome exposure method nsnp
## 1 DCkPcM E0lAMo outcome exposure MR Egger 11
## 2 DCkPcM E0lAMo outcome exposure Weighted median 11
## 3 DCkPcM E0lAMo outcome exposure Inverse variance weighted 11
## 4 DCkPcM E0lAMo outcome exposure Simple mode 11
## 5 DCkPcM E0lAMo outcome exposure Weighted mode 11
## b se pval
## 1 0.2468015 0.5054122 0.63700200
## 2 0.4242802 0.2761511 0.12443883
## 3 0.4941513 0.2214949 0.02568225
## 4 0.3028634 0.4286115 0.49594001
## 5 0.3890023 0.3168860 0.24771799
## id.exposure id.outcome outcome exposure method Q
## 1 DCkPcM E0lAMo outcome exposure MR Egger 1.602865
## 2 DCkPcM E0lAMo outcome exposure Inverse variance weighted 1.899316
## Q_df Q_pval
## 1 9 0.9963093
## 2 10 0.9970552
## id.exposure id.outcome outcome exposure egger_intercept se pval
## 1 DCkPcM E0lAMo outcome exposure 0.01463246 0.02687456 0.5993448
##
## Inverse-variance weighted method
## (variants uncorrelated, random-effect model)
##
## Number of Variants : 11
##
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## IVW 0.494 0.221 0.060, 0.928 0.026
## ------------------------------------------------------------------
## Residual standard error = 0.436
## Residual standard error is set to 1 in calculation of confidence interval when its estimate is less than 1.
## Heterogeneity test statistic (Cochran's Q) = 1.8993 on 10 degrees of freedom, (p-value = 0.9971). I^2 = 0.0%.
## Method Estimate Std Error 95% CI P-value
## Simple median 0.447 0.327 -0.195 1.088 0.172
## Weighted median 0.425 0.282 -0.127 0.977 0.131
## Penalized weighted median 0.425 0.282 -0.127 0.977 0.131
##
## IVW 0.494 0.221 0.060 0.928 0.026
## Penalized IVW 0.494 0.221 0.060 0.928 0.026
## Robust IVW 0.480 0.167 0.152 0.807 0.004
## Penalized robust IVW 0.480 0.167 0.152 0.807 0.004
##
## MR-Egger 0.247 0.505 -0.744 1.237 0.625
## (intercept) 0.015 0.027 -0.038 0.067 0.586
## Penalized MR-Egger 0.247 0.505 -0.744 1.237 0.625
## (intercept) 0.015 0.027 -0.038 0.067 0.586
## Robust MR-Egger 0.254 0.334 -0.402 0.909 0.448
## (intercept) 0.014 0.025 -0.034 0.063 0.565
## Penalized robust MR-Egger 0.254 0.334 -0.402 0.909 0.448
## (intercept) 0.014 0.025 -0.034 0.063 0.565
id.exposure | id.outcome | exposure | outcome | snp_r2.exposure | snp_r2.outcome | correct_causal_direction | steiger_pval |
---|---|---|---|---|---|---|---|
DCkPcM | E0lAMo | exposure | outcome | 0.0022022 | 1.5e-05 | TRUE | 0 |
## $r2_exp
## [1] 0
##
## $r2_out
## [1] 0.25
##
## $r2_exp_adj
## [1] 0
##
## $r2_out_adj
## [1] 0.25
##
## $correct_causal_direction
## [1] FALSE
##
## $steiger_test
## [1] 0
##
## $correct_causal_direction_adj
## [1] FALSE
##
## $steiger_test_adj
## [1] 0
##
## $vz
## [1] NaN
##
## $vz0
## [1] 0
##
## $vz1
## [1] NaN
##
## $sensitivity_ratio
## [1] NaN
##
## $sensitivity_plot
## $beta.hat
## [1] 0.4952775
##
## $beta.se
## [1] 0.2262889
##
## $beta.p.value
## [1] 0.02861901
##
## $naive.se
## [1] 0.2248014
##
## $chi.sq.test
## [1] 1.887352
## over.dispersion loss.function beta.hat beta.se
## 1 FALSE l2 0.4952775 0.2262889
## 2 FALSE huber 0.4952775 0.2321674
## 3 FALSE tukey 0.4923685 0.2321515
## 4 TRUE l2 0.4952774 0.2263075
## 5 TRUE huber 0.4952775 0.2321867
## 6 TRUE tukey 0.4923685 0.2321712
##
## MR-Lasso method
##
## Number of variants : 11
## Number of valid instruments : 11
## Tuning parameter : 0.2300059
## ------------------------------------------------------------------
## Exposure Estimate Std Error 95% CI p-value
## exposure 0.494 0.221 0.060, 0.928 0.026
## ------------------------------------------------------------------
##
## Constrained maximum likelihood method (MRcML)
## Number of Variants: 11
## Results for: cML-MA-BIC
## ------------------------------------------------------------------
## Method Estimate SE Pvalue 95% CI
## cML-MA-BIC 0.495 0.222 0.026 [0.059,0.931]
## ------------------------------------------------------------------
##
## Debiased inverse-variance weighted method
## (Over.dispersion:TRUE)
##
## Number of Variants : 11
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value Condition
## dIVW 0.501 0.225 0.059, 0.942 0.026 247.269
## ------------------------------------------------------------------
##
## Mode-based method of Hartwig et al
## (weighted, delta standard errors [not assuming NOME], bandwidth factor = 1)
##
## Number of Variants : 11
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## MBE 0.389 0.251 -0.103, 0.881 0.122
## ------------------------------------------------------------------
Title: Investigating the causality between Life time Smoking on GD
1- Number of total SNPs in exposure: 52,663 SNPs
2- Number of SNPs exposure with p-value < \(10^-8\) = 10,413 SNPs
3- Number of SNPs exposure after clumping = 126 SNPs
4- Number of total SNPs in outcome: 50,272 SNPs
5- Number of common variants between exposure and outcome: 118 SNPs(“rs13016665”, “rs12623702”, “rs73220544” “rs317021”, “rs10823968”, “rs12244388”, “rs7297175” and “rs369230” have been eliminated)
6- Number of SNPs after replacing proxies: 3 SNPs from NIH LDproxy database according to EUR ancestry have been selected: We replace “rs12623702”, “rs73220544” and “rs7297175” by rs1477031, rs62280815 and rs11171739 with R2 0.99, 1 and 0.98.So, 121 SNPs remained.
7- Number of SNPs after harmonization (action=2) = 115 SNPs (Removing the following SNPs for incompatible alleles: rs73220544 and Removing the following SNPs for being palindromic with intermediate allele frequencies: rs10922907, rs2401924, rs2678670, rs3769949, rs6692614)
8- Number of SNPs after removing HLA region with exploring in HLA Genes, Nomenclature = 115 SNP
9- Number of SNPs after removing those that have MAF < 0.01 = 115 SNPs
10- Checking pleiotropy by PhenoScanner:
How many SNPs have been eliminated after checking the PhenoScanner website: 115 SNPs
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 30.05 32.95 36.98 44.16 46.43 172.80
How many SNPs have been eliminated with checking the weakness: 0 SNP
## id.exposure id.outcome outcome exposure method nsnp
## 1 WHewoY Tlmzdq outcome exposure MR Egger 115
## 2 WHewoY Tlmzdq outcome exposure Weighted median 115
## 3 WHewoY Tlmzdq outcome exposure Inverse variance weighted 115
## 4 WHewoY Tlmzdq outcome exposure Simple mode 115
## 5 WHewoY Tlmzdq outcome exposure Weighted mode 115
## b se pval
## 1 -0.11078683 1.5711560 0.9439100
## 2 0.32205223 0.5403863 0.5511975
## 3 0.03876063 0.3880606 0.9204373
## 4 -0.94968081 1.3879703 0.4952231
## 5 -0.47869326 1.2203833 0.6956072
## id.exposure id.outcome outcome exposure method Q
## 1 WHewoY Tlmzdq outcome exposure MR Egger 131.9453
## 2 WHewoY Tlmzdq outcome exposure Inverse variance weighted 131.9566
## Q_df Q_pval
## 1 113 0.1075349
## 2 114 0.1198860
## id.exposure id.outcome outcome exposure egger_intercept se pval
## 1 WHewoY Tlmzdq outcome exposure 0.001590906 0.01619172 0.9219044
## $`Main MR results`
## Exposure MR Analysis Causal Estimate Sd T-stat
## 1 beta.exposure Raw 0.03876063 0.3880606 0.09988294
## 2 beta.exposure Outlier-corrected NA NA NA
## P-value
## 1 0.9206127
## 2 NA
##
## $`MR-PRESSO results`
## $`MR-PRESSO results`$`Global Test`
## $`MR-PRESSO results`$`Global Test`$RSSobs
## [1] 134.1068
##
## $`MR-PRESSO results`$`Global Test`$Pvalue
## [1] 0.132
## id.exposure id.outcome outcome exposure method nsnp
## 1 WHewoY Tlmzdq outcome exposure MR Egger 115
## 2 WHewoY Tlmzdq outcome exposure Weighted median 115
## 3 WHewoY Tlmzdq outcome exposure Inverse variance weighted 115
## 4 WHewoY Tlmzdq outcome exposure Simple mode 115
## 5 WHewoY Tlmzdq outcome exposure Weighted mode 115
## b se pval
## 1 -0.11078683 1.5711560 0.9439100
## 2 0.32205223 0.5303160 0.5436627
## 3 0.03876063 0.3880606 0.9204373
## 4 -0.94968081 1.4126015 0.5027581
## 5 -0.47869326 1.2435181 0.7009911
## id.exposure id.outcome outcome exposure method Q
## 1 WHewoY Tlmzdq outcome exposure MR Egger 131.9453
## 2 WHewoY Tlmzdq outcome exposure Inverse variance weighted 131.9566
## Q_df Q_pval
## 1 113 0.1075349
## 2 114 0.1198860
## id.exposure id.outcome outcome exposure egger_intercept se pval
## 1 WHewoY Tlmzdq outcome exposure 0.001590906 0.01619172 0.9219044
##
## Radial IVW
##
## Estimate Std.Error t value Pr(>|t|)
## Effect (Mod.2nd) 0.03876064 0.3880606 0.09988296 0.9204372
## Iterative 0.03876064 0.3880606 0.09988296 0.9204372
## Exact (FE) 0.03981889 0.3606924 0.11039570 0.9120956
## Exact (RE) 0.03967046 0.3725559 0.10648190 0.9153872
##
##
## Residual standard error: 1.076 on 114 degrees of freedom
##
## F-statistic: 0.01 on 1 and 114 DF, p-value: 0.921
## Q-Statistic for heterogeneity: 131.9563 on 114 DF , p-value: 0.1198897
##
## No significant outliers
## Number of iterations = 2
## [1] "No significant outliers"
In statistics, Cook’s distance or Cook’s D is a commonly used estimate of the influence of a data point when performing a least-squares regression analysis.[1] In a practical ordinary least squares analysis, Cook’s distance can be used in several ways:
1- To indicate influential data points that are particularly worth checking for validity.
2- To indicate regions of the design space where it would be good to be able to obtain more data points.
It is named after the American statistician R. Dennis Cook, who introduced the concept in 1977.
## 10 23 24 44 58 65 69
## 0.03980598 0.03034967 0.04876298 0.10730566 0.03610658 0.03062523 0.02538265
## 77 97 107
## 0.03869120 0.07938431 0.02884155
## id.exposure id.outcome outcome exposure method nsnp
## 1 WHewoY Tlmzdq outcome exposure MR Egger 95
## 2 WHewoY Tlmzdq outcome exposure Weighted median 95
## 3 WHewoY Tlmzdq outcome exposure Inverse variance weighted 95
## 4 WHewoY Tlmzdq outcome exposure Simple mode 95
## 5 WHewoY Tlmzdq outcome exposure Weighted mode 95
## b se pval
## 1 0.04590925 1.7929416 0.979626824
## 2 1.15306148 0.5689894 0.042712774
## 3 1.23129422 0.3999407 0.002079116
## 4 0.79865026 1.4012922 0.570079143
## 5 1.03890826 1.2390246 0.403883377
## id.exposure id.outcome outcome exposure method Q
## 1 WHewoY Tlmzdq outcome exposure MR Egger 62.22993
## 2 WHewoY Tlmzdq outcome exposure Inverse variance weighted 62.68993
## Q_df Q_pval
## 1 93 0.9940896
## 2 94 0.9946374
## id.exposure id.outcome outcome exposure egger_intercept se pval
## 1 WHewoY Tlmzdq outcome exposure 0.01236733 0.01823475 0.4993109
##
## Inverse-variance weighted method
## (variants uncorrelated, random-effect model)
##
## Number of Variants : 95
##
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## IVW 1.231 0.400 0.447, 2.015 0.002
## ------------------------------------------------------------------
## Residual standard error = 0.817
## Residual standard error is set to 1 in calculation of confidence interval when its estimate is less than 1.
## Heterogeneity test statistic (Cochran's Q) = 62.6899 on 94 degrees of freedom, (p-value = 0.9946). I^2 = 0.0%.
## Method Estimate Std Error 95% CI P-value
## Simple median 1.181 0.554 0.095 2.267 0.033
## Weighted median 1.176 0.553 0.092 2.260 0.033
## Penalized weighted median 1.169 0.553 0.084 2.254 0.035
##
## IVW 1.231 0.400 0.447 2.015 0.002
## Penalized IVW 1.231 0.400 0.447 2.015 0.002
## Robust IVW 1.168 0.359 0.465 1.872 0.001
## Penalized robust IVW 1.168 0.359 0.465 1.872 0.001
##
## MR-Egger 0.046 1.793 -3.468 3.560 0.980
## (intercept) 0.012 0.018 -0.023 0.048 0.498
## Penalized MR-Egger 0.046 1.793 -3.468 3.560 0.980
## (intercept) 0.012 0.018 -0.023 0.048 0.498
## Robust MR-Egger 0.126 1.178 -2.184 2.435 0.915
## (intercept) 0.011 0.013 -0.015 0.037 0.411
## Penalized robust MR-Egger 0.126 1.178 -2.184 2.435 0.915
## (intercept) 0.011 0.013 -0.015 0.037 0.411
id.exposure | id.outcome | exposure | outcome | snp_r2.exposure | snp_r2.outcome | correct_causal_direction | steiger_pval |
---|---|---|---|---|---|---|---|
WHewoY | Tlmzdq | exposure | outcome | 0.0769009 | 0.0014356 | TRUE | 0 |
## $r2_exp
## [1] 0
##
## $r2_out
## [1] 0.25
##
## $r2_exp_adj
## [1] 0
##
## $r2_out_adj
## [1] 0.25
##
## $correct_causal_direction
## [1] FALSE
##
## $steiger_test
## [1] 0
##
## $correct_causal_direction_adj
## [1] FALSE
##
## $steiger_test_adj
## [1] 0
##
## $vz
## [1] NaN
##
## $vz0
## [1] 0
##
## $vz1
## [1] NaN
##
## $sensitivity_ratio
## [1] NaN
##
## $sensitivity_plot
## $beta.hat
## [1] 1.250703
##
## $beta.se
## [1] 0.4117848
##
## $beta.p.value
## [1] 0.002387288
##
## $naive.se
## [1] 0.4068934
##
## $chi.sq.test
## [1] 62.54091
## over.dispersion loss.function beta.hat beta.se
## 1 FALSE l2 1.250703 0.4117848
## 2 FALSE huber 1.207223 0.4224118
## 3 FALSE tukey 1.199051 0.4223997
## 4 TRUE l2 1.250703 0.4118096
## 5 TRUE huber 1.207223 0.4224358
## 6 TRUE tukey 1.199051 0.4224242
##
## MR-Lasso method
##
## Number of variants : 95
## Number of valid instruments : 95
## Tuning parameter : 0.2253352
## ------------------------------------------------------------------
## Exposure Estimate Std Error 95% CI p-value
## exposure 1.231 0.400 0.447, 2.015 0.002
## ------------------------------------------------------------------
##
## Constrained maximum likelihood method (MRcML)
## Number of Variants: 95
## Results for: cML-MA-BIC
## ------------------------------------------------------------------
## Method Estimate SE Pvalue 95% CI
## cML-MA-BIC 1.249 0.404 0.002 [0.458,2.041]
## ------------------------------------------------------------------
##
## Debiased inverse-variance weighted method
## (Over.dispersion:TRUE)
##
## Number of Variants : 95
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value Condition
## dIVW 1.261 0.410 0.457, 2.065 0.002 405.910
## ------------------------------------------------------------------
##
## Mode-based method of Hartwig et al
## (weighted, delta standard errors [not assuming NOME], bandwidth factor = 1)
##
## Number of Variants : 95
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## MBE 1.039 1.195 -1.302, 3.380 0.384
## ------------------------------------------------------------------